
ggCaller Documentation
Release 1.3.0

Sam Horsfield

May 28, 2023

CONTENTS:

1 Quickstart 3

2 Installation 5

3 Usage 9

4 Tutorial 15

5 Advanced 21

6 Citations 25

7 Why ggCaller? 27

8 For the impatient 29

9 Everyone else 31

10 Contents 33

i

ii

ggCaller Documentation, Release 1.3.0

ggCaller is a novel bacterial gene annotation and pangenome analysis tool, designed to enable fast, accurate analysis
of large single-species genome datasets.

ggCaller traverses de Bruijn graphs (DBGs) built by Bifrost, using temporal convolutional networks from Balrog for
gene filtering and Panaroo for pangenome analysis and quality control.

CONTENTS: 1

https://github.com/pmelsted/bifrost
https://github.com/salzberg-lab/Balrog
https://github.com/gtonkinhill/panaroo

ggCaller Documentation, Release 1.3.0

2 CONTENTS:

CHAPTER

ONE

QUICKSTART

Important: We are aware of issues installing from conda version at the moment. We recommend installing via Docker
at this time.

1.1 Installation

The easiest way to get up and running is using Docker. To get up and running, pull the latest image:

docker pull samhorsfield96/ggcaller:latest

1.2 Preparing the data

Place all of you samples to analyse in the same directory. Then navigate inside and run:

ls -d -1 $PWD/*.fasta > input.txt

If using Docker, instead navigate to the directory containing the fasta files and run the below command, to ensure file
paths are relative (the docker version will not work with absolute paths):

ls -d -1 *.fasta > input.txt

1.3 Running ggCaller

To run ggCaller with just assemblies:

ggcaller --refs input.txt --out output_path

To run ggCaller with just reads:

ggcaller --reads input.txt --out output_path

If using Docker, run with the below command. You must ensure all paths are relative, including in input.txt:

docker run --rm -it -v $(pwd):/workdir samhorsfield96/ggcaller:latest ggcaller --refs␣
→˓input.txt --out output_path

3

ggCaller Documentation, Release 1.3.0

Important: We haven’t extensively tested calling genes within read datasets yet. Exercise caution when interpreting
results.

Results will be saved to the directory ggCaller_output by default. To change this, specify --out <path>.

4 Chapter 1. Quickstart

CHAPTER

TWO

INSTALLATION

ggCaller is available on Linux. If you are running Windows 10/11, Linux can be installed via the Windows Subsystem
for Linux (WSL). If running via Docker, ensure you install WSL2.

We plan to get a MacOS version up and running in the future.

Important: ggCaller requires python3.9 to run (which on many default Linux installations is run using python3
rather than python).

2.1 Installing with Docker (recommended)

First, install Docker for your OS. If running with WSL2, you should still download Docker Desktop for Windows.

To use the latest image, run:

docker pull samhorsfield96/ggcaller:latest

To run ggCaller from the Docker Hub image, run:

cd test && docker run --rm -it -v $(pwd):/workdir samhorsfield96/ggcaller:latest␣
→˓ggcaller --refs pneumo_CL_group2.txt

You can also build the image yourself. First download and switch to the ggCaller repository:

git clone --recursive https://github.com/samhorsfield96/ggCaller && cd ggCaller

Finally, build with Docker. This should take between 5-10 minutes to fully install.:

docker build -t ggc_env:latest -f docker/Dockerfile .

To run ggCaller from a local Docker build, run:

cd test && docker run --rm -it -v $(pwd):/workdir ggc_env:latest ggcaller --refs pneumo_
→˓CL_group2.txt

5

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.docker.com/get-docker/

ggCaller Documentation, Release 1.3.0

2.2 Installing with singularity

If you encounter permissions issues using Docker, you can download the singularity image from Zenodo

Once downloaded, set up the singularity container using:

singularity shell --writable <singulatiry image>.sif

Once loaded, add the conda bin directory to your path variable and run ggCaller as normal:

PATH=$PATH:/opt/conda/bin
ggcaller --refs input.txt --out output_path

2.3 Installing with conda

Important: We are aware of issues installing from conda at the moment. We recommend installing from docker or
source at this time.

Installing with conda is the easiest way to get ggCaller up and running, and will install all dependencies.

If you do not have conda you can install it through miniconda and then add the necessary channels:

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

Then run:

conda install ggcaller

2.4 Installing from source

You can also clone the github code to run the latest version.

You will need to install the dependencies yourself (you can still use conda or pip for this purpose). See
environment_linux.yml or environment_macOS.yml. In addition, a C++17 compiler (e.g. gcc >=7.3) is required.

We highly recommend using mamba over conda due to the large number of dependencies, making mamba significantly
faster.

To install dependencies (creates `ggc_env` environment):

mamba env create -f environment_linux.yml
mamba activate ggc_env

Then clone the code and install:

git clone --recursive https://github.com/samhorsfield96/ggCaller && cd ggCaller
python setup.py install

6 Chapter 2. Installation

https://zenodo.org/record/7870950
https://conda.io/miniconda.html

ggCaller Documentation, Release 1.3.0

2.5 Test installation

After any of the above steps, check correct setup by running ggcaller --help.

2.5. Test installation 7

ggCaller Documentation, Release 1.3.0

8 Chapter 2. Installation

CHAPTER

THREE

USAGE

ggCaller has two main modes: Gene-calling and Querying.

3.1 Gene-calling

Gene-calling predicts and annotates genes within a pangenome de Bruijn Graph (DBG), before conducting orthologue
clustering and pangenome analysis using Panaroo.

3.1.1 Predicting genes

To generate an input for ggCaller, create a directory containing of all the sequences you wish to analyses. We recom-
mend placing all samples of the same type in a single directory; place read and assembly files in separate directories.

Important: Ensure you have write access to the directories where the FASTA/FASTQ files are saved, as ggCaller
saves intermediate FMINDEX files in the same locations.

If not using Docker, generate the input file for ggCaller, navigate inside the directory containing the genomes, and run:

ls -d -1 $PWD/*.fasta > input.txt

If using Docker, you must navigate to the directory containing the fasta files and run:

ls -d -1 *.fasta > input.txt

This will generate a list of all the .fasta files in the directory. Change this extension as required.

Important: All of the below commands can be run with docker installations, however they must
be run as: docker run --rm -it -v $(pwd):/workdir samhorsfield96/ggcaller:latest ggcaller
<commands>. This command must be run within the same directory as the .fasta files and input.txt. All paths pro-
vided must be relative, as absolute paths will not work within the docker container.

DBG building with reads or assemblies is different, with k-mers that appear only once being removed from the graph.
Therefore it is important to specify whether input.txt contains reads or assemblies.

To run ggCaller with just assemblies:

ggcaller --refs input.txt

To run ggCaller with just reads:

9

ggCaller Documentation, Release 1.3.0

ggcaller --reads input.txt

To run ggCaller with reads and assemblies:

ggcaller --refs input1.txt --reads input2.txt

Important: We haven’t extensively tested calling genes within read datasets yet. Exercise caution when interpreting
results.

ggCaller can also be run on a pre-built Bifrost DBG and its associated colours file:

ggcaller --graph input.gfa --colours colours.color.bfg

This assumes all sequences used to build the graph are assemblies. If only some sequences are assemblies and the rest
are reads, specify which files are references using --refs:

ggcaller --graph input.gfa --colours colours.color.bfg --refs input1.txt

If all sequences are reads, specify --not-ref:

ggcaller --graph input.gfa --colours colours.color.bfg --not-ref

Results from all commands above will be saved to a directory called ggCaller_output by default. To change this,
specify --out <path>. Note that ggCaller will overwrite results if an already existing directory is specified.

By default, ggCaller will generate:

• Predicted genes (nucleotide and amino-acid) in FASTA format

• Gene presence/absence matrix in CSV and RTAB formats

• Pre/post Panaroo quality control gene graphs in GML format

• Structural variant presence/absence in RTAB format

• Summary graph: gene frequency, cluster size and rarefaction curve

• Roary-style gene frequency statistics

• A pangenome reference FASTA, containing all cluster centroids

• A gene presence/absence neighbour joining tree in NWK format

Additionally, ggCaller generates some intermediate files:

• Two Bifrost files, a GFA file and BFG_COLORS file, with the same file path as input.txt

• FMINDEX files for each of the sample FASTAs with the same file path the input files.

10 Chapter 3. Usage

ggCaller Documentation, Release 1.3.0

3.1.2 Annotating genes

ggCaller comes with two default databases for functional annotation of genes. - Bacterial and Viral databases from
Uniprot, used by DIAMOND - HMM profiles from Prokka, used by HMMER3

Important: Ensure you are connected to the internet when first running ggCaller as these databases are downloaded
automatically. Subsequent runs can be conducted offline.

There are three sensitivity levels for annotation:

• fast: only DIAMOND in fast mode

• sensitive: only DIAMOND in sensitive mode

• ultrasensitive: HMMER3 and DIAMOND in sensitive mode

For example, to run DIAMOND only in fast mode, run:

ggcaller --refs input.txt --annotation fast

By default these commands will annotate using DIAMOND with the Bacteria uniprot database. To change this to
the Viruses database, run:

ggcaller --refs input.txt --annotation fast --diamonddb Viruses

Custom databases can also be specified for both DIAMOND using --diamonddb and HMMER3 using --hmmdb.
DIAMOND databases must be amino-acid FASTA files. HMMER3 databases must be HMM-profile .HAMAP files
built using hmmbuild which is part of the HMMER3 package.

To run with custom DIAMOND and HMMER3 databases:

ggcaller --refs input.txt --annotation ultrasensitive --diamonddb annotation.fasta --
→˓hmmdb annotation.HAMAP

Annotation is not on by default. If annotation is specified, ggCaller will additionally generate:

• GFF files for each input genome in a separate directory GFF

• Annotations will be added to gene call FASTA files

3.1.3 Aligning genes

ggCaller also supports generation of within-cluster and core genome alignments using MAFFT.

There are two alignment algorithms implemented:

• def or default, which uses the standard MAFFT multiple sequence alignment algorithm. This is faster when
aligning <=500 sequences in a cluster.

• ref or reference, which uses reference-guided alignment. This is faster when aligning >500 sequences in a
cluster.

There are also two modes for alignment:

• core aligns genes only within core clusters, and generates a concatenated core genome alignment.

• pan aligns genes within all clusters (pangenome alignment), as well as generating a concatenated core genome
alignment.

To generate a core genome alignment using default MAFFT, run:

3.1. Gene-calling 11

https://www.uniprot.org/
https://github.com/bbuchfink/diamond
https://github.com/tseemann/prokka
https://github.com/EddyRivasLab/hmmer
https://github.com/GSLBiotech/mafft

ggCaller Documentation, Release 1.3.0

ggcaller --refs input.txt --aligner def --alignment core

To generate a pangenome alignment using reference-guided MAFFT, run:

ggcaller --refs input.txt --aligner ref --alignment pan

To change the frequency of genes deemed to be core, use –core-threshold (default = 0.95, or 95% frequency). For
example, only include genes found at 100% frequency:

ggcaller --refs input.txt --aligner def --alignment core --core-threshold 1.0

Alignment is off by default. If specified, ggCaller will additionally generate:

• Core genome alignment in FASTA format

• Core genome Neighbour-joining tree in NWK format

• Per-cluster alignment files in FASTA format in a separate directory aligned_gene_sequences

• Per-cluster VCF file generated by SNP-SITES in separate directory VCF

3.1.4 Quality control and clustering

ggCaller implements Panaroo to identify spurious clusters that are generated by assembly fragmentation and contami-
nation.

Panaroo identifies spurious clusters as those with <2 edges in the gene graph. Spurious clusters are then removed based
on their population frequency, determined by three settings:

• strict; remove spurious clusters with <5% frequency. Good for datasets >100 genomes where rare plasmids
are not expected.

• moderate; remove spurious clusters with <1% frequency (default). Good for datasets <=100 genomes where
rare plasmids are not expected.

• sensitive; do not remove clusters. Good for datasets where rare plasmids are expected.

For example, to run ggCaller in strict mode:

ggcaller --refs input.txt --clean-mode strict

More information can be found here.

If you use the full pipeline of ggCaller, also please cite Panaroo.

3.2 Querying

Querying maps a set of query DNA sequences to an annotated DBG, identifying genes that the query overlaps with.

12 Chapter 3. Usage

https://github.com/sanger-pathogens/snp-sites
https://gtonkinhill.github.io/panaroo/#/gettingstarted/params
https://doi.org/10.1186/s13059-020-02090-4

ggCaller Documentation, Release 1.3.0

3.2.1 Saving datastructures

Annotate a DBG as before, adding the --save flag. This will write the intermediate datastructures containing DBG
coordinates of the predicted genes to a directory called ggc_data.

Important: We suggest using an annotation database, either the default ones provided or a custom one, as this will
enable better functional analysis of your queries.

For example, run with sensitive annotation and save intermediate files:

ggcaller --refs input.txt --annotation sensitive --save

3.2.2 Querying the DBG

Queries sequences can either be in multi-FASTA format, or in a single file with each sequence on its own line.

Provide paths to the DBG .gfa and .color.bfg files, the ggc_data directory and query file:

ggcaller --query queries.fasta --graph inputs.gfa --colours inputs.color.bfg --data␣
→˓ggCaller_output/ggc_data

By default, mapped queries >=80% matching k-mers to a given colour will be returned. This can be changed using
--query-id flag.

To return queries with 100% match:

ggcaller --query queries.fasta --graph inputs.gfa --colours inputs.color.bfg --data␣
→˓ggCaller_output/ggc_data --query-id 1.0

3.2.3 Interpreting results

Results will be output in matched_queries.fasta in the specified output directory. This is a multi-FASTA file
describing all annotated genes that overlap with the query sequences.

An example format is below:

>Isolate10_9298 ggcID=10_9298 QUERY=Query_A;Query_B annotation=FUNCTION A;FUNCTION B;
ATGTTAAATAAAGTCAAAACTAAAGCCTTAATTAGTGTCGGAGCAGTGGCTGCAACTAGCTAG

The header contains:

• Sample name and gene number (Isolate10_9298)

• ggCaller identifier (ggcID field)

• Mapped query sequences or IDs (QUERY field) separated by semi-colons. These will be fasta IDs if queries file
is a FASTA, otherwise DNA sequence.

• Annotation(s) (annotation field) separated by semi-colons

3.2. Querying 13

ggCaller Documentation, Release 1.3.0

3.3 Parallelisation

ggCaller is fully parallelised using OpenMP and python multiprocessing. By default ggCaller runs single-threaded.

To specify the number of threads:

ggcaller --refs input.txt --threads 8

14 Chapter 3. Usage

CHAPTER

FOUR

TUTORIAL

Here we’ll walk through a typical run of ggCaller, including both Gene-calling and Querying.

Example results can be found here.

Important: Results will be consistent, but may not exactly match between your run and the example. This is due to
the greedy clustering algorithm used by ggCaller, which can cause small differences in genes counts.

4.1 Installation and setup

Follow the guide in Installation for downloading and installing ggCaller.

4.2 Working Dataset

We’ll use a dataset from Bentley et al. (2006). This dataset contains 91 sequences pneumococcal capsular polysac-
charide synthetic (CPS) loci. These sequences are structurally diverse, but are only ~20,000 bp in length, so can be
analysed quickly (~5-10 minutes) on a standard laptop or desktop.

Download the files from here and unzip:

tar xvf Bentley_et_al_2006_CPS_sequences.tar.bz2

We will also provide our own custom annotation database for DIAMOND. These will be the manually curated protein
sequences from Bentley et al. Download from here and unzip:

tar xvf Bentley_et_al_2006_CPS_protein_sequences.tar.bz2

4.3 Gene-calling

First generate an input file for ggCaller. This must be a file containing paths (absolute recommended) to all sequences
to be analysed. We recommend running the below command within the unzipped to generate this file:

cd Bentley_et_al_2006_CPS_sequences
ls -d -1 $PWD/*.fa > input.txt
cd ..

15

https://figshare.com/articles/dataset/ggCaller_example_results/21831204
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0020031
https://figshare.com/articles/dataset/Bentley_et_al_2006_CPS_sequences/21829038
https://figshare.com/articles/dataset/Bentley_et_al_2006_CPS_protein_sequences/21829071

ggCaller Documentation, Release 1.3.0

input.txt will now contain absolute paths to all .fa files in the directory Bentley_et_al_2006_CPS_sequences.

Now we will run ggCaller specifying the below settings:

• Sensitive DIAMOND annotation using a custom database, and HMMER3 using the default database

• Pangenome-wide alignment using default MAFFT

• Saved intermediate datastructures, enabling sequence querying

To do this using 4 threads, run:

ggcaller --refs Bentley_et_al_2006_CPS_sequences/input.txt --annotation ultrasensitive --
→˓diamonddb Bentley_et_al_2006_CPS_protein_sequences.faa --aligner def --alignment pan --
→˓save --out ggc_Bentley_et_al_CPS --threads 4

You will find the following files in the output directory ggc_Bentley_et_al_CPS:

• cluster_size.png: a frequency distribution of clusters by the number of genes found within them

• gene_frequency.png: a frequency distribution of clusters by proportion of dataset

16 Chapter 4. Tutorial

ggCaller Documentation, Release 1.3.0

• rarefaction_curve.png: rarefaction curve, describes the number of new genes discovered with random addi-
tion of a single genome. Also includes power-law fit for determination of pangenome openness, based on Tettelin
et al. (2005).

4.3. Gene-calling 17

https://www.pnas.org/doi/10.1073/pnas.0506758102
https://www.pnas.org/doi/10.1073/pnas.0506758102

ggCaller Documentation, Release 1.3.0

• core_gene_alignment.aln: concatenated core genome alignment

• core_alignment_header.embl: core genome alignment in EMBL format

• core_tree_NJ.nwk: Neighbour joining tree from core genome alignment generated by RapidNJ. This can be
visualised in Microreact

• pangenome_NJ.nwk: Neighbour joining tree from gene presence/absence matrix generated by RapidNJ (can
also be visualised in Microreact).

18 Chapter 4. Tutorial

https://birc.au.dk/software/rapidnj/
https://microreact.org/

ggCaller Documentation, Release 1.3.0

• pan_genome_reference.fa: contains centroids for each cluster in FASTA format

• gene_calls.faa and gene_calls.ffn: gene predictions with annotations in amino-acid and nucleotide
FASTA formats

• pre_filt_graph.gml and final_graph.gml: gene graphs pre- and post-quality control with Panaroo

• gene_presence_absence*: gene presence absence files in three formats; Roary-CSV, CSV and Rtab

• struct_presence_absence.Rtab: structural variant presnce/absence matrix

• summary_statistics.txt: summary of gene frequencies based on Roary

• VCF: directory containing VCF files for each cluster generated by SNP-SITES

• aligned_gene_sequences: directory of alignment files for each cluster in FASTA format

• GFF: directory of GFF files for each sample in GFF3 format

• ggc_data: intermediate datastructures written to disk, required for querying.

4.4 Querying the graph

We can now query the graph. To do so, run:

ggcaller --query CPS_queries.fasta --graph Bentley_et_al_2006_CPS_sequences/input.gfa --
→˓colours Bentley_et_al_2006_CPS_sequences/input.color.bfg --data ggc_Bentley_et_al_CPS/
→˓ggc_data --out ggc_Bentley_et_al_CPS --threads 4

Results will be saved in ggc_Bentley_et_al_CPS/matched_queries.fasta.

Details on the output can be found in Interpreting results.

From matched_queries.fasta, we can see that all the genes queried were identified in the graph.

As we searched for specific gene variants, this search was too stringent to return orthologues in other genomes.

Important: We recommend searching for partial gene sequences, or lowering --query-id to return more distantly
related sequences.

4.4. Querying the graph 19

https://github.com/sanger-pathogens/snp-sites

ggCaller Documentation, Release 1.3.0

20 Chapter 4. Tutorial

CHAPTER

FIVE

ADVANCED

For advanced users, ggCaller has a number of parameters for altering gene prediction, annotation and quality control.

5.1 Input/output

• --kmer: value of k used to build Bifrost DBG (Default and max value = 31).

• --all-seq-in-graph: Output gene graph GML file with all DNA and amino acid sequences. Off by default
due to large file size.

5.2 Traversal and gene-calling cut-off settings

• --max-path-length: Maximum path length traversed during ORF finding (bp) (Default = 20000)

• --min-orf-length: Minimum ORF length to return (bp) (Default = 90)

• --score-tolerance: Probability threshold for shorter alternative start sites based on average stop codon fre-
quency (Default = 0.2)

• --max-ORF-overlap: Maximum overlap allowed between two ORFs (bp) (Default = 60)

• --min-path-score: Minimum total BALROG score for a maximum tiling path of ORFs to be returned (Default
= 100)

• --min-orf-score: Minimum individual Balrog score for an ORF to be returned (Default = 100)

• --max-orf-orf-distance: Maximum distance between two ORFs to be connected (bp) (Default = 10000)

5.3 Avoid/include algorithms

• --no-filter: Do not filter ORF calls using Balrog, will return all ORF calls (Default = False)

• --no-write-idx: Do not write FMIndexes to file (Default = False)

• --no-write-graph: Do not write Bifrost GFA and colours to file (Default = False)

• --repeat: Enable traversal of nodes multiple times, only applicable when DBG built from reads (Default =
False)

• --no-clustering: Do not cluster ORFs (Default = False)

• --no-refind: Do not refind missed genes (Default = False)

21

ggCaller Documentation, Release 1.3.0

5.4 Gene clustering options

• --identity-cutoff: Minimum identity at amino acid level between two ORFs for lowest-level clustering
(Default = 0.98)

• --len-diff-cutoff: Minimum ratio of length between two ORFs for lowest-level clustering (Default = 0.98)

• --family-threshold: Gene family sequence identity threshold (default=0.7)

• --merge-paralogs: Don’t split paralogs during Panaroo quality control (Default = False)

5.5 Annotation options

• --evalue: Maximum e-value to return for DIAMOND and HMMER searches during annotation (Default =
0.001)

• --truncation-threshold: Sequences in a cluster less than centroid length * truncation-threshold will be
annotated as ‘potential pseudogene’ (Default = 0.8)

5.6 Gene-refinding options

• --search-radius: The distance (bp) surrounding the neighbour of an accessory gene in which to search for it
(Default = 5000)

• --refind-prop-match: The proportion of an accessory gene’s length that must be found in order to consider
it a match (Default = 0.2)

5.7 Gene graph correction stringency options (determined by clean-
mode)

• --min-trailing-support: Minimum cluster size to keep a gene called at the end of a contig.

• --trailing-recursive: Number of times to perform recursive trimming of low support nodes near the end
of contigs

• --edge-support-threshold: Minimum support required to keep an edge that has been flagged as a possible
mis-assembly

• --length-outlier-support-proportion: Proportion of genomes supporting a spurious long gene (>1.5x
outside the IQR of cluster)

• --min-edge-support-sv: Minimum edge support required to call structural variants in the presence/absence
sv file

• --no-clean-edges: Turn off edge filtering in the final output graph

22 Chapter 5. Advanced

ggCaller Documentation, Release 1.3.0

5.8 Alignment options

• --no-variants: Do not call variants using SNP-sites after alignment (Default = False)

• --ignore-pseduogenes: Ignore ORFs annotated as ‘potential pseudogenes’ in alignments (Default = False)

5.9 Misc. options

• --quiet: Suppress additional output to console (Default = False)

• --version: Show program’s version number and exit (Default = False)

5.8. Alignment options 23

ggCaller Documentation, Release 1.3.0

24 Chapter 5. Advanced

CHAPTER

SIX

CITATIONS

If you use ggCaller, please cite our preprint:

Horsfield, S.T., Croucher, N.J., Lees, J.A. “Accurate and fast graph-based pangenome annotation and clustering with
ggCaller” bioRxiv 2023.01.24.524926 (2023). doi: https://doi.org/10.1101/2023.01.24.524926

ggCaller relies on a number of other tools. In addition, please cite:

6.1 DBG building and querying

• Bifrost: Holley, G., Melsted, P. “Bifrost: highly parallel construction and indexing of colored and compacted de
Bruijn graphs.” Genome Biol 21(249) (2020). https://doi.org/10.1186/s13059-020-02135-8

6.2 FM-index generation and querying

• Kseq: seqtk: https://github.com/lh3/seqtk

• SDSL v3: Succinct Data Structure Library 3.0

6.3 Gene scoring and overlap penalisation

• Balrog: Sommer M.J., Salzberg S.L. “Balrog: A universal protein model for prokaryotic gene prediction.” PLoS
Comput Biol 17(2): e1008727 (2021). https://doi.org/10.1371/journal.pcbi.1008727

• Eigen v3: Guennebaud, G., Jacob, B. et al. “Eigen v3” (2010). http://eigen.tuxfamily.org

• Boost graph library: Siek, J., Lee, L.Q. & Lumsdaine, A. “Boost graph library” (2002) https://www.boost.org/
doc/libs/1_79_0/libs/graph/doc/index.html

25

https://doi.org/10.1101/2023.01.24.524926
https://doi.org/10.1186/s13059-020-02135-8
https://github.com/lh3/seqtk
https://github.com/xxsds/sdsl-lite
https://doi.org/10.1371/journal.pcbi.1008727
http://eigen.tuxfamily.org
https://www.boost.org/doc/libs/1_79_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_79_0/libs/graph/doc/index.html

ggCaller Documentation, Release 1.3.0

6.4 Pairwise gene comparisons

• Edlib: Šošić, M., Šikić, M. “Edlib: a C/C++ library for fast, exact sequence alignment using edit distance.”
Bioinformatics 33(9) (2017). https://doi.org/10.1093/bioinformatics/btw753

6.5 Gene annotation

• DIAMOND: Buchfink B., Reuter K., Drost H.G. “Sensitive protein alignments at tree-of-life scale using DIA-
MOND”, Nature Methods 18:366–368 (2021). https://doi.org/10.1038/s41592-021-01101-x

• HMMER3: Eddy S.R. “A New Generation of Homology Search Tools Based on Probabilistic Inference.”
Genome Inform., 23:205-211 (2009).

6.6 Alignment and variant calling:

• MAFFT: Katoh, K., Misawa, K., Kuma, K. & Miyata, T. “MAFFT: a novel method for rapid multiple sequence
alignment based on fast Fourier transform.” Nucleic Acids Research. 30 (14), 3059–3066 (2002). https://doi.
org/10.1093/nar/gkf436

• SNP-sites: Page, A.J., Taylor, B., Delaney, A.J., Soares, J., Seemann, T., Keane, J.A. & Harris, S.R. “SNP-sites:
rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial genomics.” 2 (4), e000056 (2016).
https://doi.org/10.1099/mgen.0.000056

• RapidNJ: Simonsen, M., Pedersen, C. “Rapid computation of distance estimators from nucleotide and amino
acid alignments” Proceedings of the ACM Symposium on Applied Computing (2011) https://doi.org/10.1145/
1982185.1982208

6.7 Clustering and pangenome analysis

• Panaroo: Tonkin-Hill, G., MacAlasdair, N., Ruis, C. et al. “Producing polished prokaryotic pangenomes with
the Panaroo pipeline.” Genome Biol 21(180) (2020). https://doi.org/10.1186/s13059-020-02090-4

26 Chapter 6. Citations

https://doi.org/10.1093/bioinformatics/btw753
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1099/mgen.0.000056
https://doi.org/10.1145/1982185.1982208
https://doi.org/10.1145/1982185.1982208
https://doi.org/10.1186/s13059-020-02090-4

CHAPTER

SEVEN

WHY GGCALLER?

ggCaller uses population-frequency information at several stages of gene annotation and pangenome analysis. This has
several benefits:

• Consistent identification of start and stop codons across orthologs, improving clustering accuracy.

• Reduced gene-annotation sensitivity to assembly fragmentation.

• Reduced runtime verses existing gene-annotation and pangenome analysis workflows.

• One-line command from fasta -> gene annotations, gene frequency matrices, clusters of orthologous genes
(COGs), core genome/pangenome alignments, phylogenetic trees, small/structural variants and more!

• Annotated DBG-querying for functional PanGenome-Wide Association Studies (PGWAS), compatible with re-
sults from Pyseer.

27

https://github.com/mgalardini/pyseer

ggCaller Documentation, Release 1.3.0

28 Chapter 7. Why ggCaller?

CHAPTER

EIGHT

FOR THE IMPATIENT

See Quickstart to get ggCaller up and running quickly.

29

ggCaller Documentation, Release 1.3.0

30 Chapter 8. For the impatient

CHAPTER

NINE

EVERYONE ELSE

We recommend starting with Installation to ensure things are installed correctly, followed by Usage to get an overview
of the commands, and finally Tutorial for a step-by-step walkthrough.

31

ggCaller Documentation, Release 1.3.0

32 Chapter 9. Everyone else

CHAPTER

TEN

CONTENTS

• search

33

	Quickstart
	Installation
	Preparing the data
	Running ggCaller

	Installation
	Installing with Docker (recommended)
	Installing with singularity
	Installing with conda
	Installing from source
	Test installation

	Usage
	Gene-calling
	Predicting genes
	Annotating genes
	Aligning genes
	Quality control and clustering

	Querying
	Saving datastructures
	Querying the DBG
	Interpreting results

	Parallelisation

	Tutorial
	Installation and setup
	Working Dataset
	Gene-calling
	Querying the graph

	Advanced
	Input/output
	Traversal and gene-calling cut-off settings
	Avoid/include algorithms
	Gene clustering options
	Annotation options
	Gene-refinding options
	Gene graph correction stringency options (determined by clean-mode)
	Alignment options
	Misc. options

	Citations
	DBG building and querying
	FM-index generation and querying
	Gene scoring and overlap penalisation
	Pairwise gene comparisons
	Gene annotation
	Alignment and variant calling:
	Clustering and pangenome analysis

	Why ggCaller?
	For the impatient
	Everyone else
	Contents

