Quickstart¶
Installation¶
The easiest way to get up and running is using Docker. To get up and running, pull the latest image:
docker pull samhorsfield96/ggcaller:latest
Preparing the data¶
Place all of your samples to be analysed in the same directory. Then navigate inside and run:
ls -d -1 $PWD/*.fasta > input.txt
If using Docker, instead navigate to the directory containing the fasta files and run the below command, to ensure file paths are relative (the docker version will not work with absolute paths):
ls -d -1 *.fasta > input_docker.txt
Then, append the prefix /data/
to each line to enable ggCaller to find the files:
sed -i -e 's|^|/data/|' input_docker.txt
Running ggCaller¶
Important
Assemblies with many Ns generate disjointed DBGs leading to underclustering. To ensure optimal performance, avoid using assemblies containing Ns.
To run ggCaller with just assemblies:
ggcaller --refs input.txt --out output_path
To run ggCaller with just reads:
ggcaller --reads input.txt --out output_path
If using Docker, run with the below command, ensuring you keep --balrog-db /app/ggc_db
and /workdir
paths as specified below. Replace path to files
with the absolute path to the directory of files in input_docker.txt
:
docker run --rm -it -v $(pwd):/workdir -v <path to files>:/data samhorsfield96/ggcaller:latest ggcaller --balrog-db /app/ggc_db --refs /workdir/input_docker.txt --out /workdir/output_path
Important
We haven’t extensively tested calling genes within read datasets yet. Exercise caution when interpreting results.
Results will be saved to the directory ggCaller_output
by default. To change this, specify --out <path>
.